
Comparing different versions of SDBot using SABRE BinDiff v1.7

Sebastian Porst, September 2005

Table of Contents

Introduction.. 2
An overview of BinDiff..3
An overview of SDBot... 3
Working with BinDiff.. 4
Conclusions.. 8
References.. 9

Comparing different versions of SDBot using SABRE BinDiff v1.7 1/9

1. Introduction

In the last few years the form and behaviour of malware changed significantly
([Mashevsky2005]). The ever growing popularity of the Internet led to a decline of the
traditional viruses which spread and worked independently from the virus creator once they
were released into the wild. This old form of malware was slowly replaced by Trojan horses
and bots which feature advanced remote control options that allow their creator to control
their spread and infection process or to update the program on the fly.

This new form of malware is significantly more complex than those of the past. Among
other things modern malware often feature different ways to spread (ICQ, AIM, IRC, ...),
they include recently published operating-system or application exploits of all sorts to
maximize the number of infected machines and they contain entire servers for technologies
like FTP or the e-mail protocols.
One example of an extremely complex piece of malware is the so called Reptile Bot. The
source code of this bot contains more than 200 files organized in several Visual C++
projects making the bot as complex as an average shareware or freeware program.

This increasing complexity reached its logical conclusion when new pieces of malware
started to follow versioning and upgrading rules that have been commonplace in “real”
software projects for decades. When a malicious programmer learns about the shortcomings
of earlier versions of his Trojan horse he merely creates updates that fix those problems
instead of writing a new bot. Coupled with the fact that many of these pieces of malware are
open-source and readily available on the Internet for everyone to use and abuse it's obvious
that lots of different versions of the same piece of malware exist.

An extreme example of this is a bot called SDBot which this paper focuses on. The virus
database of Sophos Antivirus claims to know about 1300 different versions of this bot1. Now
that number is certainly exaggerated because two different compilations of the same bot that
only differ in some connection or authentication information are for all intents and purposes
still the same bot. Nevertheless assuming the existence of several dozen different versions of
SDBot is probably realistic.

Next to the undisputedly malicious programs already mentioned a new category of malware
surfaced in the last years: Spyware, according to Wikipedia2 “a broad category of malicious
software intended to intercept or take partial control of a computer's operation without the
user's informed consent”.
Even though many spyware creators pretend to be legitimate businesses Anti-Virus
companies started to blacklist their software. If that's justified or not is not up to me to
decide but I can point out the similarities between spyware and other pieces of modern
malware that are relevant for this paper. As spyware applications pretend to be legitimate
applications they generally follow the rules of proper software development both in terms of
application complexity and in terms of upgrading and versioning.

These new developments in malware creation call for new tools for examining malware that
allow anti-virus researchers to react quickly when a new version of a known piece of

1 http://www.sophos.com/search/index.cgi?scope=whole_site&terms=sdbot&x=0&y=0
2 http://en.wikipedia.org/wiki/Spyware

Comparing different versions of SDBot using SABRE BinDiff v1.7 2/9

malware hits the wild. This paper is about one of these new tools: SABRE BinDiff

2. An overview of BinDiff

BinDiff is a relatively new tool which has matured to version 1.7 as of the time I started to
write this paper in September 2005. It was developed by Halvar Flake and Rolf Rolles of
SABRE Security3. Working as a plugin for the popular disassembler IDA Pro4 4.8
(Interactive Disassembler Pro) it compares two executable files and attempts to match
functions between the two files even when the code inside the functions or the relative order
of the functions in the file changed.

To accomplish this the researchers at SABRE Security created sophisticated algorithms
based on graph theory and the search for so called fixpoints, points that uniquely identify a
chunk of code, in executable files. There's no need to go further into the details of this
process in this paper as the SABRE Security website hosts two excellent papers that explain
how everything works. If you're interested in the mathematical and theoretical background
of matching pieces of code between binary files I suggest you read [FlakeDimva2004] and
[BinDiffSSTIC05].

Once the user asked BinDiff to compare two IDB databases (the database format IDA uses)
he has several options:
By default BinDiff displays the matched and unmatched functions using a simple grid that
allows the user to quickly navigate from function to function.
Furthermore the tool can display flow charts of the matched functions. This makes it very
easy for the user to verify the results BinDiff created as the flowcharts of two different
versions of the same function should still be relatively similar.
BinDiff eases the process of recognizing matches and differences within two matched
functions even more by colouring the nodes in the chart in different ways but more about
that later.
Last but not least BinDiff can automatically port function names, anterior and posterior
comment lines, standard comments, and local names from one disassembly to the other. The
use of this powerful and time-saving option increases with the size of the executables you're
working with and with the number of comments in the IDB databases.

More about all these options will be presented later in this paper.

3. An overview of SDBot

To demonstrate the usefulness of BinDiff in malware analysis it's necessary to provide an
example. I've decided to use a Trojan Horse called SDBot written by the Russian virus
programmer [sd] for this purpose.

There are three reasons for my decision:

- I already have access to several versions of SDBot.
- SDBot is a relatively simple bot, it's source code is just a single C file.
- SDBot exists in lots of different versions and is therefore a prime candidate for BinDiff

3 http://www.sabre-security.com/
4 http://www.datarescue.com/

Comparing different versions of SDBot using SABRE BinDiff v1.7 3/9

To allow readers to fully understand the results I'm about to present in the next part of this
paper I want to give a short overview of the functionality of SDBot now. Like I said, SDBot
is rather small. Depending on the exact version of the bot its single source file is between 50
KB and 70 KB large. The code of the bot is structured in 25 – 30 different functions.
Symantec describes the functionality of the bot the following way5: “Backdoor.Sdbot is a
Trojan horse that opens a back door and allows a remote attacker to control a computer by
using Internet Relay Chat (IRC). The Trojan can update itself by checking for newer
versions on the Internet. “ The current Symantec threat assessment of this bot can be seen in
illustration 1.

4. Working with BinDiff

Before drawing any conclusions I want to use this part of the paper to explain what working
with BinDiff is like. To explain how BinDiff can be used to simplify malware analysis I set
up the following experiment. I took a number of different versions of SDBot executables
and starting with the earliest version I have I used BinDiff to speed up analysis of the other
versions. The following four different versions of SDBot are used for this purpose:

- SDBot 0.4b I compiled myself with lcc-win32 3.8
- SDBot 0.5a I compiled myself with lcc-win32 3.8
- SDBot 0.5b I compiled myself with lcc-win32 3.8
- SDBot 0.5a I found in the wild compiled with Visual C++ 6

The very first step that's necessary to benefit from BinDiff is to analyze and annotate the
first version of the malware you find. This is a standard procedure when analyzing malware
and happens before the anti-virus researcher even knows for sure that different versions of
the malware will spread in the future.

In the example scenario this means disassembling the executable file of SDBot 0.4b in IDA
and assigning names to the functions. As SDBot is open-source I've decided to use the
function names from the original source code instead of creating new ones. This first
executable file contains 185 functions of which only 26 are actual SDBot code. The other
functions are part of the C standard library or whatever else lcc adds to the binary file. Only
the 26 SDBot functions and how successfully BinDiff matches them are examined further in
this paper.

After starting BinDiff and selecting the appropriate files to compare, BinDiff works for a
few seconds and opens three new windows in IDA when it's done. The first of these three
windows gives information about the functions BinDiff could match between the two files.

5 http://securityresponse.symantec.com/avcenter/venc/data/backdoor.sdbot.html

Comparing different versions of SDBot using SABRE BinDiff v1.7 4/9

Illustration 1: SDBot threat metrics

The other two windows show the functions which couldn't be matched in the first and
second file.

Depending on what exactly you're doing, the matched or the unmatched functions might be
more important. Nevertheless it's a good idea to start working with the unmatched functions
because even though BinDiff is already very good it's not omniscient and not all equal
functions can be matched between two binary files. Some manual work is still necessary.

In Illustration 2 you can see the two windows showing
information about the unmatched functions. In the
“Unmatched Other” window the user has the option to
match functions manually. To do so he right-clicks onto a
function and chooses the option “View probable matches”
from the context-menu. Doing so makes a dialog pop up
which allows the user to choose from a list of functions that
are likely matches of the selected function (Illustration 4).
In the example I've opted for the function irc_parseline, the
biggest function in SDBot, which can easily be matched manually because its large number
of nodes, links and children stands out compared to the same numbers of other functions.

If BinDiff suggests several potential matches for a function and the user is still unsure which
function is the real match there's also the option to view the flow graph of the two functions.
As the flow graphs and especially the code of two different versions of the same function is
in most cases remarkably similar, comparing the flow graphs removes the last ambiguity
most of the time.

Comparing different versions of SDBot using SABRE BinDiff v1.7 5/9

Illustration 2: Unmatched Functions

Illustration 3: Unmatched Functions
context menu

After the user finished matching unmatched functions manually he can now move on to the
matched functions. The “Matched Functions” window (Illustration 5) contains a grid with
five columns. The first column says whether the function changed between the two versions.
The other four columns give the name and the effective address of the matched functions. At
this point the user has several options which are provided through the context menu you can
see in Illustration 6.

The first option, “Port”, copies all sorts of comments and
function names from the first file to the second one. How
exactly this works can be configured in the BinDiff
Options dialog. It's important to note at this point that this
option will port the comments and names of all functions
from one file to the other, not just the name and comments of
the selected function.

The flow graph option for matched functions is a bit
different to the one for unmatched functions because it's
now possible to highlight differences and similarities

Comparing different versions of SDBot using SABRE BinDiff v1.7 6/9

Illustration 4: Likely Matches

Illustration 5: Matched Functions

Illustration 6: Matched Functions
context menu

between the two functions directly in the flow chart. In Illustration 7 you can see what
BinDiff has to offer after chosing the “Visual Diff” option for the rndnick function, a
function that generates a random nick to be used after the bot connects to an IRC server.

How and if node and code changes are highlighted in the flow graph can be configured in
the BinDiff options dialog. In the example, a red node border means that the node changed
between the two versions and red code means that code changed between the two versions.
Green borders mark the entry node of loops while blue borders mark the exit block of loops.

In Illustration 7 you can see that the first and the last node of the function changed. Giving
the first node a closer look (Illustration 8; left side) you can notice that code was added to
initialize the C random number generator (srand) with a seed calculated from the Windows
API function GetTickCount. This part was previously missing. The difference in the last
node (illustration 8; right side) is that the bot moved from strcpy to the safer strncpy when
copying the generated nick from one string buffer to another one.

Comparing different versions of SDBot using SABRE BinDiff v1.7 7/9

Illustration 7: The two versions of rndnick

5. Conclusions

After the process of working with BinDiff has now been thoroughly explained it's time to
look at the actual results of my SDBot experiment. I was quite happy with BinDiff and the
numbers I'm about to present serve to illustrate my point.

The following table shows the recognition rate of BinDiff when comparing different
versions of SDBot with each other. Each version of SDBot was compared with the one
before. The exception is 0.5a VC++ which was compared with the SDBot version 0.5a LCC.
The high matching rate between the same source file compiled with two different compilers
was surprising.

The column Matched (A) shows the number of functions BinDiff automatically matched
correctly.
Matched (M) are the number of functions BinDiff didn't match automatically but provided a
single, correct likely match for me to match the functions manually.
The third column, Matched (I) contains the number of functions I was able to match after
applying the manual matching process iteratively. That means I went ahead and manually
matched all functions for which BinDiff suggested a single, correct likely match. Doing that
improves the result of other functions by correcting formerly ambigious results. I continued
that until only incorrect or ambigious matches were left.
The number of functions BinDiff couldn't match without the user having a good look at the

Comparing different versions of SDBot using SABRE BinDiff v1.7 8/9

Illustration 8: rndnick: Changed nodes

function code can be found in the last column. Note that there are new functions in newer
versions of SDBot and BinDiff obviously can't find any matches for them. That means the
number in the last column is not equivalent to the number of incorrect matches BinDiff
made.

SDBot Filesize Functions Matched (A) Matched (M) Matched (I) Unmatched
0.4b (LCC) 59,424 26 - - - -
0.5a (LCC) 63,520 27 18 3 3 3
0.5b (LCC) 61,984 28 21 3 0 4
0.5a (VC++) 199,168 27 22 1 0 4

6. References

[Mashevsky2005] - Yury Mashevsky; Watershed in malicious code evolution; July 29
2005; http://www.viruslist.com/en/viruses/analysis?pubid=167798878

[FlakeDimva2004] – Halvar Flake; Structural Comparison of Executable Objects; 2004;
http://www.sabre-security.com/files/dimva_paper2.pdf

[BinDiffSSTIC05] – Thomas Dullien, Rolf Rolles; Graph-based comparison of executable
objects; 2005; http://www.sabre-security.com/files/BinDiffSSTIC05.pdf

Comparing different versions of SDBot using SABRE BinDiff v1.7 9/9

http://www.viruslist.com/en/viruses/analysis?pubid=167798878
http://www.viruslist.com/en/viruses/analysis?pubid=167798878
http://www.sabre-security.com/files/BinDiffSSTIC05.pdf
http://www.sabre-security.com/files/dimva_paper2.pdf
http://www.sabre-security.com/files/dimva_paper2.pdf

