
Protecting the Oracle
–

A proof of concept for a Delphi obfuscator

Copyright 2005 - Sebastian Porst (webmaster@the-interweb.com)

Protecting the Oracle – A proof of concept for a Delphi obfuscator 1 / 16

Table of Contents
Introduction.. 3
What exactly is the problem?... 3
An explanation of how DeDe works and an overview of what's coming.. 3
The DFM data...4
The VMT data.. 8
Combining DFM data and VMT data.. 13
Problems and ideas... 15
Conclusion..16

Protecting the Oracle – A proof of concept for a Delphi obfuscator 2 / 16

Illustration 1: DFM tree before and after obfuscation

Illustration 2: Properties of a StringGrid control before and after obfuscation

 0. Introduction
The advent of DeDe, the self-proclaimed Delphi Decompiler, in 1999 started a new era in
reverse engineering programs compiled with Borland Delphi. In case you're not aware of
this tool, the term decompiler is actually misleading to describe the functionality of DeDe as
it implies that the tool can reconstruct Delphi source code from binary files. This is
definitely not the case though.
What DeDe really is is a class browser that allows the user to browse the meta-data of all
classes derived from TObject that are used in the binary file (that's equivalent to the classes
of the VCL). It's basically an enhanced version of the Delphi object inspector that's used
during Delphi development but it works for binary files instead of Delphi source files.
DeDe also comes with other features like a built-in disassembler but these other features
were neither new nor as revolutionary as DeDe's core functionality.

1. What exactly is the problem?
At first glance the insight DeDe offers doesn't seem to be much of a problem. After all
there's no critical data in the properties of the components you set in the object inspector
when you implement your software. This line of thinking is fundamentally flawed though.
There actually is critical data in these properties, and lots of it. Otherwise DeDe would have
never had such an impact on reverse engineering Delphi binaries.
The critical data I'm talking about in the context of reverse engineering Delphi files are the
names of the properties and some of their values.

Imagine a shareware program that can be registered using a standard name/password
combination the user enters in a special dialog. The password can be entered in edit fields
and the user confirms his input by clicking a button. Now what's more helpful to a person
who wants to gain access to the important parts of the registration logic with the goal to
crack the software? A resource named RegisterDialog or a resource named
G5gAQLRICMZPIU?
What about a button named RegButton with a corresponding OnClick property called
RegButtonClick? This is certainly a dead give-away for any potential attacker and because
DeDe can resolve the addresses where these events can be found in the file and perform an
instant disassembly of the code there the attacker could locate the critical code in less than
three seconds.
Would a button named HoiDDdf4 with a property named KLF442E and a value like
JHIogeeGEIffdF be just as valuable to the attacker, especially when it's buried in hundreds if
not thousands of equally meaningless names? I think not.
And that's exactly what this paper intends to show you: How to make DeDe completely
useless by obfuscating the data DeDe reads from Delphi binary files.

2. An explanation of how DeDe works and an overview of what's coming
Delphi binaries contain two different sets of data which DeDe takes and combines to display
interesting information.
The first of these two sets is the Delphi formular data (hereafter referred to as DFM data).
This is the data you might be familiar with from your own Delphi development. It's nothing
but a textual representation of all the component and control names of the project and their
properties that can be accessed and changed through the object inspector during
development.
The other dataset (hereafter called VMT data) is the data that can be found in the so called
virtual method tables (VMTs) of all classes that are either direct or indirect child classes of

Protecting the Oracle – A proof of concept for a Delphi obfuscator 3 / 16

TObject. These virtual method tables are the meta-data which describe the entire class
hierarchy of the classes derived from TObject. This includes but is not limited to the names
and types of the class properties, the methods belonging to the classes and a whole lot of
other data. An in-depth overview of this VMT data is given in chapter 5.
The tool I'm going to introduce as a proof of concept for how I'm suggesting to combat
DeDe and other tools of it's kind is named Pythia after the priestess of the oracle of Delphi.
It can modify the DFM and VMT data of existing binary files in such a way that it's
rendered useless for any person attempting to reverse engineer the software while the
program itself will keep working just like the unobfuscated program. Pythia does basically
exactly what DeDe does but instead of presenting the data from Delphi executable files it'll
obfuscate it.
In the coming two sections I'm going to introduce the data structures used to hold the DFM
and VMT data in Delphi executables as far as I've succesfully reverse-engineered them
myself during the development of Pythia. Afterwards I'm going to give an overview of the
process of connecting and obfuscating DFM and VMT data and the problems that come
with that process.
As far as I know the information I'm going to present is valid for Delphi executables
compiled with Delphi 5 or later. Coincidentally it also applies to C++ Builder files compiled
with BCB 5 or later. This is because C++ Builder like Delphi uses the VCL (Visual
Components Library) for all forms development. Consequently Pythia should work with
executables compiled with version 5 of higher of Delphi or C++ Builder.

3. The DFM data
The Delphi form data is the less complicated of the two datasets used by DeDe and Pythia.
It's basically a straight-forward translation of the textual representation of controls of a
Delphi project into a binary representation. The textual representation can be found in the
DFM files of a project during development.
Locating DFM data is easy, it can be found in the resource directory of Delphi executables.
DFM data resources are always of type 0x0A (RT_RCDATA) and they can easily be
distinguished from other resources of the same type by checking the first four bytes of the
resource. DFM resources always begin with the four bytes long string „TPF0“.
After the „TPF0“ identifier the real DFM data begins. It's structured in a hierarchical tree
that represents the placement of controls on a form. The root element of a DFM resource is
always the form itself. This form can contain controls like memos, labels or panels. Panels
and other container controls can again contain other controls. This is a recursive process, the
height of the DFM tree is arbitrary.
Every time a control is defined in the DFM resource it's type and name is given followed by
it's properties and the definitions of it's sub-controls.

Let's have a closer look at the exact format of the DFM data now. Following the „TPF0“
string comes a Pascal-style string (PString) that identifies the name of the class of the form
in that resource. Unlike C-style strings PStrings are not zero-terminated. To be able to
determine the length of these strings they begin with a single byte that contains that length.
The string data follows right after this first byte. On few occasions the length can also be
given by a four bytes long integer number. This is the case when dealing with so called
LongStrings. In this document the term PString always refers to strings of a maximum size
of 255 characters, the use of LongStrings is mentioned explicitly wherever applicable.

Once in a while control definitions do not instantly begin with with the PString that gives
the name of the class of the control. They begin with a single byte of the form 0xFX instead.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 4 / 16

DeDe translates this byte by adding „inherits“ to the definition of the control. I haven't
worked out the exact purpose of this byte but it appears to be irrelevant for obfuscation.
While testing Pythia with random programs I've encountered values of 0xF1, 0xF2 and 0xF4
for this byte. It's likely that more of these values, especially 0xF3, exist. Pythia just skips
over them.

After the string that specifies the type of a control (root-control or not) there's another
PString that gives the name of the control object. Then the definition of the properties of that
control begins.
Every property definition is of the same form. First there's a PString that contains the name
of the property. This is followed by a single byte that indicates the type of the property. The
third and last element of a property definition is the the value of the property. The format of
the value depends on the type of the property. A list of property definitions goes on until a
terminating zero byte is found instead of a new property name. At this point the definition of
a new control begin or the resource ends.

Here's a list of the structures of the type specific data of the property values I've managed to
find and figure out. The first column gives the value of the byte that identifies the property
type. The second column contains the name of the type and the last column gives a brief
description of what I've found out about these types.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 5 / 16

ID Name Description
0x00 Variant I've only encountered this property once during the development

of Pythia. Unfortunately the value of the property was null then
so I haven't been able to research the structure of this type
thoroughly. When I looked at it that one time though it was a two
bytes long value.

0x01 Array An array is a linear list of types. All arrays I've seen so far
contained Strings of resource type 0x06 but it's likely that the
type of array elements can be any DFM type. The length of an
array value depends on the elements of the array. Arrays are
closed by a terminating zero-byte.

0x02 Byte As the name implies byte values are exactly one byte long.
0x03 Word Word values are two bytes long.
0x04 Dword Dword values are four bytes long.
0x05 Double I'm not really sure if this is really a double value. Judging from

the names of the properties where I've seen this property type it's
very likely though. The size of this resource type seems to be 10
bytes.

0x06 String Values of type 0x06 are PStrings with a size of up to 0xFF bytes
(the length of the string is given by a single byte).

0x07 Enumeration The value of an enumeration in the DFM resource is the string
representation of the enumeration value, for example the string
“bsToolWindow” for the property BorderStyle. The structure of
values of type 0x07 is identical to those of type 0x06.

0x08 Boolean false The length of values of this type is zero because the type is
already the value. Type 0x08 denotes boolean properties of value
false.

0x09 Boolean true The opposite of the boolean false value. Also 0 bytes long.
0x0A Image An image resource is a chunk of bytes that contains the data of an

image. These resources begin with a four bytes long value that
contains the size of the actual image data.
There's an important fact to remember about these resources: The
data of some of them (not all) begins with the classname of the
type of the image resource. I've seen TBitmap and TIcon so far
but there might be others. This needs to be kept in mind when
these two classes are obfuscated later. Otherwise these images
won't be loaded anymore.

0x0B Set The structure of a set can be compared to the structure of
enumerations. The only difference is that while only one value of
an enumeration can be selected as the value of a property an
arbitrary amount of values from a set can be selected.
Like arrays sets are zero-terminated.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 6 / 16

ID Name Description
0x0C LongString? Possibly equivalent in structure to 0x14. I don't have any concrete

example for this type of resource here but some of my older
source codes indicate that I used to treat this type like resources
of type 0x14.

0x0D Nil Another resource type of size 0. 0x0D represents the value nil.
0x0E Record This is probably the most complicated resource type. A record

can contain elements and these elements are described by their
property definitions inside the record. Records are basically trees
that are comparable in structure to the entire DFM tree.
The main difference is that records can only contain unnamed
elements of one type. That means the elements inside the record
are described by nothing more than their properties.
Every element of the record is zero-terminated and the entire
record itself is also zero-terminated.

0x12 Unicode String A LongString where every character is 2 bytes long. If the size of
the string is 20 the size of the actual resource is 2 * 20 plus the
four bytes that contain the length.

0x14 LongString A PString where the length is given in a 32bit value instead of an
8bit value.

Table 1: DFM types

Now that I've given a brief overview of the DFM structure as far as I've uncovered it let me
give a practical example of one of these structures.

0005DE4C 5450 4630 0654 466F 726D 3105 466F 726D TPF0.TForm1.Form
0005DE5C 3104 4C65 6674 03C0 0003 546F 7002 6B05 1.Left....Top.k.
0005DE6C 5769 6474 6803 B802 0648 6569 6768 7403 Width....Height.
0005DE7C E001 0743 6170 7469 6F6E 0605 466F 726D ...Caption..Form
0005DE8C 3105 436F 6C6F 7207 0963 6C42 746E 4661 1.Color..clBtnFa
0005DE9C 6365 0C46 6F6E 742E 4368 6172 7365 7407 ce.Font.Charset.
0005DEAC 0F44 4546 4155 4C54 5F43 4841 5253 4554 .DEFAULT_CHARSET
0005DEBC 0A46 6F6E 742E 436F 6C6F 7207 0C63 6C57 .Font.Color..clW
0005DECC 696E 646F 7754 6578 740B 466F 6E74 2E48 indowText.Font.H
0005DEDC 6569 6768 7402 F509 466F 6E74 2E4E 616D eight...Font.Nam
0005DEEC 6506 0D4D 5320 5361 6E73 2053 6572 6966 e..MS Sans Serif
0005DEFC 0A46 6F6E 742E 5374 796C 650B 000E 4F6C .Font.Style...Ol
0005DF0C 6443 7265 6174 654F 7264 6572 080D 5069 dCreateOrder..Pi
0005DF1C 7865 6C73 5065 7249 6E63 6802 600A 5465 xelsPerInch.`.Te
0005DF2C 7874 4865 6967 6874 020D 0005 544D 656D xtHeight....TMem
0005DF3C 6F05 4D65 6D6F 3104 4C65 6674 0270 0354 o.Memo1.Left.p.T
0005DF4C 6F70 0270 0557 6964 7468 03B9 0006 4865 op.p.Width....He
0005DF5C 6967 6874 0259 0D4C 696E 6573 2E53 7472 ight.Y.Lines.Str
0005DF6C 696E 6773 0106 0E54 6869 7320 6973 2061 ings...This is a
0005DF7C 2074 6573 7406 2174 6F20 6465 6D6F 6E73 test.!to demons
0005DF8C 7472 6174 6520 7468 6520 4446 4D20 7374 trate the DFM st
0005DF9C 7275 6374 7572 652E 0008 5461 624F 7264 ructure...TabOrd
0005DFAC 6572 0200 0000 0754 4275 7474 6F6E 0742 er.....TButton.B
0005DFBC 7574 746F 6E31 044C 6566 7403 9800 0354 utton1.Left....T
0005DFCC 6F70 03D8 0005 5769 6474 6802 4B06 4865 op....Width.K.He
0005DFDC 6967 6874 0219 0743 6170 7469 6F6E 0602 ight...Caption..
0005DFEC 4F4B 0854 6162 4F72 6465 7202 0107 4F6E OK.TabOrder...On

Protecting the Oracle – A proof of concept for a Delphi obfuscator 7 / 16

0005DFFC 436C 6963 6B07 0C42 7574 746F 6E31 436C Click..Button1Cl
0005E00C 6963 6B00 0000 ick...

This DFM resource defines a form named Form1 of type TForm1 with two controls: A
TMemo object named Memo1 and a TButton object named Button1. Several different
property types are used for the properties. How to interpret the values of these properties is
described in the table above.

4. The VMT data

The second dataset, the virtual method table data, is a bit more complicated. It's harder to
locate than the DFM data and it's structure is more complex. VMT data is used to describe
the classes that derive from TObject at one point. There's exactly one VMT in the
executable file for every class used by the program.

The most important of all the structures I'm going to describe in this section is the so called
VMT table. The following table shows the layout of a VMT structure. It's been taken from
Brian Long's paper „Debugging With More Than Watches And Breakpoints“1 which he
presented at BorConUK 2001. I've marked the parts which are important for DeDe and
Pythia.

Constant name Offset Description

vmtSelfPtr -76 Address of first VMT entry if any, or of classname

vmtIntfTable -72 Address of implemented interface table

vmtAutoTable -68 Address of automated class section (Delphi 2)

vmtInitTable -64 Address of table of fields requiring initialization

vmtTypeInfo -60 Address of RTTI

vmtFieldTable -56 Address of published field table

vmtMethodTable -52 Address of published method table

vmtDynamicTable -48 Address of DMT

vmtClassName -44 Address of classname string

vmtInstanceSize -40 Number of bytes of instance data required by object

vmtParent -36 Address of ancestor class VMT

vmtSafeCallException -32 Address of virtual method, SafeCallException

vmtAfterConstruction -28 Address of virtual method, AfterConstruction

vmtBeforeDestruction -24 Address of virtual method, BeforeDestruction

vmtDispatch -20 Address of virtual method, Dispatch

vmtDefaultHandler -16 Address of virtual method, DefaultHandler

vmtNewInstance -12 Address of virtual method, NewInstance

vmtFreeInstance -8 Address of virtual method, FreeInstance

vmtDestroy -4 Address of virtual destructor, Destroy

Table 2: Structure of virtual method tables

1 http://www.blong.com/Conferences/DCon2001/Debugging/Debugging.htm

Protecting the Oracle – A proof of concept for a Delphi obfuscator 8 / 16

An entire VMT structure is 76-bytes long. It begins with a pointer (called vmtSelfPtr) that
points to the virtual address that's 76 bytes after the virtual address of the beginning of the
VMT (that's the byte right after the end of a VMT table). This is how Pythia recognizes
VMTs. Pythia searches through the entire file and attempts to locate offsets X that contain a
value that's the virtual address of the virtual address of X + 76. Some more validity checking
is performed and when this also passes succesfully a VMT was recognized.

Another simple entry in the VMT structure is the field called called vmtClassName. This
field contains the virtual address of a PString that's the classname of the class the VMT
belongs to.

vmtParent contains the virtual address of the vmtTypeInfo structure of the parent class of a
class.

The first of the more complicated elements of the VMT structure is vmtTypeInfo.
vmtTypeInfo contains the virtual address of the TypeInfo structure of a class (this would
also be the value of the vmtParent entry of sub-classes of that class).
TypeInfo structures contain the meta-data that defines the properties of a class. Here's the
general layout of these structures.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 9 / 16

Illustration 3: Example of a VMT Table in a disassembled file.

Offset Size in
bytes

Description

0 1 The purpose of the first byte is unknown.
1 X A PString that contains the name of the class the TypeInfo

structure belongs to.
X + 2 4 Equals the value of the vmtSelfPtr value of that class.
X + 6 4 Appears to be a pointer to a pointer to the TypeInfo structure of

the parent class.
X + 10 2 Another word value of unknown purpose.
X + 12 Y The name of the package the current class belongs to.
X + Y + 13 2 The number of PropertyInfo blocks to follow.

Table 3: Layout of a vmtTypeInfo structure

This block is immediately followed by the number of PropertyInfo blocks specified in the
last 2-byte value of the TypeInfo structure.

Here's the general layout of a PropertyInfo block2.

Offset Size Description
0 4 A pointer to pointer to the virtual address of the TypeInfo structure of

the value type of that property.
4 4 A pointer to the virtual address of the get-procedure of that property.
8 4 A pointer to the virtual address of the set-procedure of that property.
12 4 A pointer to the virtual address of the stored-procedure of that property.
16 4 Index for array properties.
20 4 Default value
24 4 Index for indexed properties
28 4 Flags describing property procedures.
32 X A PString that gives the name of the property that's being defined in the

current PropertyInfo block.

Table 4: Layout of a PropertyInfo structure

2 See http://www.blong.com/Conferences/BorConUK98/DelphiRTTI/CB140.htm and
http://www.freepascal.org/docs-html/rtl/typinfo/tpropinfo.html for more information.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 10 / 16

http://www.blong.com/Conferences/BorConUK98/DelphiRTTI/CB140.htm
http://www.freepascal.org/docs-html/rtl/typinfo/tpropinfo.html

The next structure I'm going to introduce now is the FieldTable structure which can be
found at the virtual address of the vmtFieldTable value of a VMT.

Offset Size Description
0 2 The number of field blocks to follow.
2 4 A pointer to a list that contains pointers to the TypeInfo blocks of the

classes of all fields. The first element of that list is a word value that
gives the number of pointers in the list.

Table 5: Layout of a vmtFieldTable structure

Right after the FieldTable structure comes the promised number of field blocks. These are of
the following structure:

Protecting the Oracle – A proof of concept for a Delphi obfuscator 11 / 16

Illustration 4: Disassembled vmtTypeInfo block for class TFont.

Offset Size Description
0 4 Unknown purpose
4 2 Unknown purpose
6 X A PString containing the name of the field.

Table 6: Layout of field block structures.

The last structure of relevance for Pythia is the MethodTable structure. Information about
the methods of a class are stored here. A method table begins with a single word value that
contains the number of MethodInfo blocks to follow. MethodInfo blocks have the following
structure.

Offset Size Description
0 2 An id for the method.
2 4 The virtual address of the method.
4 X A PString that contains the name of the method.

Table 7: Layout of vmtMethodTable structures

Protecting the Oracle – A proof of concept for a Delphi obfuscator 12 / 16

Illustration 5: Disassembled vmtFieldTable block.

If you recall the example I've given in the introduction you might realize that this is maybe
the most important structure of them all. This is where the method identified by DeDe at
some offset turns from RegBtnClick to GboeBOIfDD3ge.

5. Combining DFM data and VMT data

Now that the necessary structures for obfuscation have been introduced it's time to explain
how they are connected as that's one of the main problems for obfuscation. If the two trees
are not perfectly synchronized anymore after obfuscation the program will refuse to start (in
the best case) or generate more or less subtle errors (in the worst case).

Pythia stores all string values it can find in DFM data and VMT data in dynamically
allocated strings. After reading the two datasets all the structures are connected in the way
I'm about to describe. String values are connected by not more than exchanging pointers in
these structures so that strings of equal value really point to the the same string data.
This simplifies the process of obfuscation tremendously. Otherwise it would have been
necessary to keep the DFM and VMT tree synchronized which while certainly possible is
quite complicated. As soon as all string values were synchronized like that it's enough to
iterate through all members of the VMT tree and to obfuscate the string values in that tree.
The DFM tree is updated automatically due to the shared pointers.

Synchronizing the classnames found in the DFM data with those of the VMT data is simple
because of the unique nature of classnames in a Delphi file. It's therefore enough to walk
through the entire VMT tree until a VMT with that classname was found.

It should be noted that Pythia does not obfuscate the classnames of classes that are found on
the top level of the DFM data (TForm, ...). When attempting to do this unresolvable errors
occured. The name of the resource that holds the DFM data equals the classname of the top-
level control in that resource. Changing the resource name is also necessary when
obfuscating classnames of top level classes but it didn't solve the problem in all cases. In
some cases renaming the resource too worked but I've also encountered several very weird

Protecting the Oracle – A proof of concept for a Delphi obfuscator 13 / 16

Illustration 6: Disassembled vmtMethodInfo block.

cases, for example one resource named TAboutBox. It was possible to rename this resource
to TAAXXXXXXX or any letter actually for the Xs. It was not possible to touch the first
two letters in any way. And the third letter could be changed from anything between 'a' and
'o' but as soon as I changed it to 'p' or a higher letter the program refused to start. That's very
weird behaviour I can not yet explain.

Resolving the names of the controls isn't too tough either. The names of top-level controls
have no dependencies, they can be changed at will. They are also not part of the VMT
structure which means they are not automatically obfuscated after the entire VMT tree was
changed.
Child controls on the other hand are part of the VMT structure. They are defined in the
vmtFieldTable block of a VMT. Resolving names of child controls found in the DFM data is
therefore merely checking the field table of the right VMT. Which VMT to check is also
very straight-forward. Even though child controls can recursively be placed inside other
child controls the VMT that contains all field definitions is always the VMT of the top-most
control (the form). Checking the VMT of the top-level control is therefore enough.

The last things to obfuscate are the names of the properties and their values. Here's where
things get a bit more complicated.
Let's start with the names of the properties. In the easiest case looking up a property name is
nothing more but searching the vmtTypeInfo structure of a property with a given name. If
the property can't be found there it must be looked up recursively in the VMTs of all parent
classes of that class until TObject is reached. If the property can't even be found there it's not
part of the VMT tree. This is rare but valid. On very few occasions Delphi does not put
properties into the VMT tree. The property TextHeight, for example, is one of these. I don't
know the reason for this but properties that can't be looked up in the VMT tree also can't be
obfuscated by Pythia.
Another major problem are properties that derive from TCollection. Due to the nature of
collections in Delphi it's apparently not possible to find out what elements are inside a
collection by merely looking at the VMT tree. Pythia contains a list of known collections
which is of course by no means complete. This list knows which elements are inside a
collection with a given name. If new collections are found they must be added to this list
too.
Another thing to look out for are qualified property names. These names which appear only
in DFM data contain a '.' character. An example which appears in basically every Delphi
executable is a property named „Font.Charset“. Not a single control has a property of that
name but many controls have a property named „Font“ which has a property named
„Charset“. And that's how qualified property names have to be looked up. Starting with the
first of the period-separated segments of the name all individual segments have to be looked
up in the context of what the look-up of the former segment returned. All but one of the
property names I've seen during testing consisted of only two segments but that one other
property which had 3 segments seems to be sufficient proof that the number of segments is
probably arbitrary.

The values of properties are even more difficult to look up and obfuscate. There is no simple
link between the values of properties and the VMT although one could probably construct at
least a weak link by checking if the type of the property is at least of the same type as the
value of the property.
Pythia doesn't do that though. Pythia merely compares strings. If the value of a property
matches a field or method found in the VMT it'll be obfuscated. That works well for

Protecting the Oracle – A proof of concept for a Delphi obfuscator 14 / 16

property values like acAction1 or FormCreate. This doesn't work nearly as well for property
values like Left which might be a completely valid caption for a label and a completely valid
name of a property at the same time. Nevertheless Pythia would obfuscate the caption of the
label too.
Qualified values are also a possibility. They must be looked up just like qualified property
names.

The individual segments of qualified property names and qualified property values can
probably be either names of classes, fields, properties or methods. It's noteworthy that case
does not seem to be important when comparing strings from the DFM data with strings from
the VTM data. At first glance it seems that equality between strings is determined case-
insensitively, the strings in the DFM data appear to be case-sensitively equal to the
corresponding string in the VMT. I've experienced a single case where this was not true
though. In one file I used during testing there was a method called „FilterEditChange“
defined in the VMT data, the string in the DFM data was written „FiltereditChange“ though.
This might happen because Delphi is not case-sensitive and the programmer might have
made a typo when assigning this method to the OnChange event of a control.

6. Problems and ideas
Some of the problems were already mentioned above but let me reiterate them and add some
other problems to think about.

- Some properties can't be looked up. This is not a major problem because it only happens
very rarely and I've never seen it happen for an interesting property.

- Top-level classnames can't be obfuscated. This can be a potential problem if classnames
like TRegisterDialog are used.

- The obfuscation method only works for Delphi binaries with statically linked packages
because dynamically linked packages don't contain the VMT tree (which can then be
found in VCLxx.BPL; xx depends on the Delphi version). This is generally a non-issue
because basically all Delphi binaries are linked statically. For the few remaining Delphi
programs using dynamically linked packages it might be possible to use a package file
that was obfuscated just like the EXE file.

- Obfuscating the values of properties is problematic because valid strings might be
obfuscated too (see the „Left“ example in 6). This problem could be cured by introducing
whitelists or blacklists to the obfuscator where the user can specify property values that
should (not) be obfuscated.

- The obfuscation of type names has the potential to make features like error-reporting
useless. This is partly true when using Pythia in it's current form. It's easy to produce a
log of what exactly was obfuscated and using that log it's possible to determine the
original name of an encrypted type. A significantly better idea would be the extension of
the aforementioned whitelists and blacklists to cover type names (and all other strings
which are potentially obfuscated) too.

- The TCollection issue as already explained in section 6 could be solved better, for
example using a config file where the user can add the names of types derived from
TCollection and the type of the elements of that collection.

- The effects of obfuscation on RTTI have not been researched.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 15 / 16

- Unobfuscated strings like captions still exist and in the face of obfuscated strings they
might become a valuable piece of information for any attacker. Obfuscating the
TRegDialog is nearly useless if the caption of the dialog still reads „Register...“. This is
not a problem of the obfuscator though, it's a problem of the software that's obfuscated.

- The process I've described is most likely not valid for new Delphi.NET executable files.
This is not a real problem though as DeDe is probably not going to work with them either.

- Pythia does not obfuscate the string representations of enumeration or set values although
this would certainly be possible.

- Pythia only uses a small part of the VMT. Other parts can also be used to fool DeDe or
similar tools. For example it might be possible to change class hierarchies at run-time by
manipulating VMTs or it might be possible to crash DeDe by creating VMTs that are
complete bogus and point to invalid addresses.

7. Conclusion
The paper has shown that it's both possible to render DeDe useless and how to implement an
obfuscator that automates the process. It's not complete by any means but it's a good first
step for someone who has more time and dedication for such a project than myself.
Nevertheless it should not be forgotten that security by obscurity is not really security at all.
Obfuscating Delphi binaries the way I've introduced it is merely a small part in the
protection of a piece of software.

Protecting the Oracle – A proof of concept for a Delphi obfuscator 16 / 16

